СОВРЕМЕННЫЕ МЕТОДЫ БОРЬБЫ С ВИБРАЦИЕЙ ТРУБОПРОВОДНЫХ СИСТЕМ НЕФТЕГАЗОВОЙ ОТРАСЛИ MODERN METHODS OF STRUGGLE AGAINST VIBRATION OF PIPELINE SYSTEMS OF OIL AND GAS BRANCH УДК 66.026.2

Ю.К. ПОНОМАРЕВ А.С. КОТОВ А.Е. ЕВСИГНЕЕВ	д.т.н., профессор, Отраслевая научно-исследовательская лаборато- рия «Вибрационная прочность и надежность двигателей летатель- ных аппаратов и их систем», Самарский государственный аэро- космический университет им. акад. С.П. Королева (национальный исследовательский университет) - СГАУ к.т.н., доцент, Отраслевая научно-исследовательская лаборатория «Вибрационная прочность и надежность двигателей летательных аппаратов и их систем», СГАУ директор ООО «АСТРОН»	Самара evsigneev@dempfer.ru
J.K. PONOMAREV A.S. KOTOV A.E. EVSIGNEEV	Doctor of Science, professor SSAU PhD, associate professor, SSAU director Astron LLC	Samara
КЛЮЧЕВЫЕ СЛОВА:	Трубопровод, виброзащита, демпфирование, металлорезина, стабильность, эффективность эксплуатации Традивание и править в составляет с ставить ставить ставить ставить ставить ставить с	

В статье рассмотрены вопросы виброзащиты трубопроводных систем на базе виброизоляторов с упругими элементами гипервысокой диссипации энергии из материала «металлорезина», широко применяющихся в машиностроении и аэрокосмической технике.

In article ques

energy from a material «metallrubber», widely applied in mechanical engineering and the space techniques are considered.

Обеспечение вибрационной надежности трубопроводных систем является одной из важнейших задач в проблеме экологической безопасности нефтегазодобывающей отрасли. Для реализации этой задачи в различных странах используются. там, где это необходимо, средства виброзащиты с эластичными элементами при фиксации трубопроводов на трассах. Как правило, местами, где требуется успокоение колебаний трубопроводов, являются их участки, выходящие из газонефтеперекачивающих станций, территории самих станций, участки, находящиеся над землей. В этих случаях трубопроводы могут быть закреплены с помощью специальных хомутов (рис. 1) с упругодемпфирующими прокладками из спрессованного проволочного материала «металлорезина» [1, стр. 9]. Для экономии материала прокладки могут быть изготовлены в виде параллелепипедов или втулок с центральным отверстием по болтовое крепление (рис. 2). Аналогичные конструктивные разработки с эластичными элементами из спрессованного проволочного сетчатого материала имеются и за рубежом [2 – 6, стр. 9], однако до сих пор методик расчета упругодиссипативных характеристик данных систем не существовало, и параметры элементов подбирались экспериментально. Авторами создана и далее предлагается для использования в нефтегазовой отрасти такая методика расчета, апробированная на ряде изделий аэрокосмической техники.

Авторами разработана конструктивная схема виброизолятора для гашения колебаний трубопроводов среднего диаметра, показанная на рис. 3. Данный виброизолятор включает в себя хомут 1, стягиваемый вокруг трубопровода болтами 2 с гайками 3. К нижней части хомута приварен крепежный элемент в виде отрезка швеллера 4 с отверстием, служащим для закрепления в нем с помощью гайки 5 с пружинной шайбой 6 болта 7 виброизолятора 8. Виброизолятор состоит из разъемного стального корпуса, включающего верхнюю 9 и нижнюю 10 крышки с конусными кольцевыми постелями, центрального конусного корпуса 11 с крепежным болтом 7 и дистанционного корпуса 12. Именно с помощью дистанционного корпуса 12 производится настройка демпфера на оптимальные параметры демпфирования и жесткости. Вся конструкция виброизолятора 8 стягивается в единое целое болтами 13. В нижней крышке 10 выполнены резьбовые отверстия для закрепления виброизолятора на переходных плитах телескопических опор, позволяющих осуществлять «установку по месту». Между крышками 9, 10 и центральным корпусом 11 виброизолятора установлены конусные упругодемпфируюшие элементы 15 из материала MP. устанавливаемые с заданным предварительным осевым натягом. На рис. 4, в качестве примера, показана одна из многих схем крепления трубопроводов на ОАО «Новокуйбышевский нефтеперерабатывающий завод» с использованием упругодемпфирующих виброизоляторов, схема которых приведена на рис. 3.

1. Разработка методики расчета нагрузочных характеристик цилиндрических опор с дискретным расположением упругодемпфирующих элементов из материала «металлорезина»

Для разработки методики расчета демпфера с дискретным расположением п упругодемпфирующих элементов возьмем элемент в виде параллелепипеда (рис. 2), ►

Рис. 3. Схема демпфированной опоры для системы трубопроводов среднего диаметра

размеры которого *Hxbxl* (высота х ширина х длина) с массой m, полученный путем холодного прессования усилием *F*_{no}.

Пусть первый элемент смещен относительно оси деформирования у на угол ф, угол между элементами - Ø. Тогда угловое положение i-того элемента относительно первого определится выражением:

$$\beta_i = \Theta \cdot (i-1)$$

(1)

Упругий элемент установлен в опоре между корпусом и цапфой радиуса *R* с некоторым натягом ∆. Расчетная схема показана на рис. 5.

Зададим перемещение вибратора с амплитудой А в виде гармонического закона некоторой вспомогательной переменной а изменяющейся в диапазоне [0, 2*π*]: (2)

$$y = -A \cdot \cos \alpha$$

Введем коэффициент загрузки демпфера в зависимости от смещения у:

$$v_{\mathcal{A}} = \begin{cases} 1, \ ecnu \ \frac{dy}{d\alpha} \ge 0; \\ 2, \ ecnu \ \frac{dy}{d\alpha} < 0. \end{cases}$$
(3)

Тогда для упругодемпфирующего элемента, имеющего угловое положение β_i коэффициент загрузки можно описать выражением:

Рис.5. Расчетная схема демпфера с дискретным расположением упругодемпфирующих элементов

Рис. 4. Типовые схемы усиления эстакады и монтажа демпфированных опор с элементами из металлорезины

$$\mathbf{v} = \begin{cases} 1, \ e c \pi u \ v_{\pi} = 1 \ \mathbf{h} \cos \beta_{i} > 0; \\ 2, \ e c \pi u \ v_{\pi} = 1 \ \mathbf{h} \cos \beta_{i} \le 0; \\ 1, \ e c \pi u \ v_{\pi} = 2 \ \mathbf{h} \cos \beta_{i} \le 0; \\ 2, \ e c \pi u \ v_{\pi} = 2 \ \mathbf{h} \cos \beta_{i} > 0. \end{cases}$$
(4)

При перемещении цапфы вдоль вертикальной оси на величину у радиальная деформация *i*-того упругодемпфирующего элемента q, будет равна:

$$q_i = q_i^* + \Delta = \Delta + y \cdot \cos \beta_i \tag{5}$$

где q_i – переменная составляющая нормального смещения элемента $d\phi$.

Амплитудное значение деформации упругодемпфирующего элемента можно отыскать по выражению:

$$q_{0i} = q_{0i}^* + \Delta = \Delta + (-1)^{\nu_{\mathcal{A}}} \cdot A \cdot \cos \beta_i \quad (6)$$

где $q_{_{0i}}$ – амплитудное значение переменной составляющей нормального смещения элемента $d\varphi$.

Выведем выражение для текущего изменения относительной плотности δ_{pm_i} элемента:

$$\delta_{\bar{\rho}m_{i}} = \frac{\bar{\rho}_{m_{i}}}{\bar{\rho}_{0_{i}}} - 1 = \frac{\rho_{m_{i}} \cdot \rho_{np}}{\rho_{np} \cdot \rho_{0i}} - 1 = \frac{m \cdot V_{0i}}{V_{mi} \cdot m} - 1 = \frac{V_{0i}}{V_{m_{i}}} - 1$$
(7)

где $\delta_{\overline{\rho}m_i}$ – текущее изменение относительной плотности *i*-того элемента, V_{mi} – текущее значение изменения в процессе деформирования объема *i*-того упругодемпфирующего элемента, V_{oi} – значение объема i-того упругодемпфирующего элемента в свободном состоянии.

Запишем выражение для текущего изменения в процессе деформирования объема упругодемпфирующего элемента (УДЭ):

$$V_{mi} = (H - q_i) \cdot b \cdot l \tag{8}$$

а выражение для отыскания объема упругодемпфирующего элемента в свободном состоянии:

$$V_{0i} = H \cdot b \cdot l \tag{9}$$

При совместном рассмотрении выражений (7 - 9), получим:

$$\delta_{\bar{\rho}m_i} = \frac{H}{H - q_i} - 1 \tag{10}$$

Аналогично выводится выражение для амплитудного значения изменения относительной плотности:

$$\delta_{\bar{p}0_i} = \frac{H}{H - q_{0i}} - 1$$
 (11)

При перемещении вибратора вдоль оси на величину у тангенциальные ►

Рис. 6. Поле петель гистерезиса, представленное зависимостью коэффициента трения f от величины взаимного проскальзывания Δf при различном коэффициенте экспоненты k

14

смещения *т* элемента упругодемпфирующего элемента будут равны:

$$\tau_i = y \cdot \sin \beta_i$$

Амплитудное значение тангенциальных смещений или координата начала деформирования в собственной системе координат в тангенциальном направлении будет определяться выражением

$$f_{0i} = A \cdot \sin \beta_i \tag{13}$$

(12)

Введем коэффициент загруженности *v*_r і-того упругодемпфирующего элемента, с угловой координатой *β*_i для расчета величины относительного проскальзывания:

$$v_{\tau_{i}} = \begin{cases} 1, \ ecnu \ v_{\pi} = 1 \ u \sin \beta_{i} \ge 0; \\ 1, \ ecnu \ v_{\pi} = 1 \ u \sin \beta_{i} < 0; \\ -1, \ ecnu \ v_{\pi} = 2 \ u \sin \beta_{i} \ge 0; \\ -1, \ ecnu \ v_{\pi} = 2 \ u \sin \beta_{i} < 0. \end{cases}$$
(14)

Величина взаимного проскальзывания Δ_{μ} определится как разность межу амплитудным значением тангенциальных смещений τ_{μ} и текущим значением смещения τ_i . Таким образом, с учетом выражения (14) получим:

$$\Delta_{i} = \tau_i + v_{\tau_i} \cdot \tau_{0i} \tag{15}$$

Для i-того упругодемпфирующего элемента с угловой координатой $\beta_{,}$ с учетом загрузки элемента, определяемого выражением (14) и используя обобщенный принцип Мазинга [7, стр. 9], выражение для изменения коэффициента трения в процессе циклической работы демпфера выразится следующим образом:

$$f(\Delta_t) = f \cdot v_{\tau_i} (1 - 2e^{-k \cdot \Delta_{t_i}})$$
(16)

Изменение коэффициента трения в зависимости от величины взаимного проскальзывания выразится в виде петель гистерезиса, показанных на рис. 6.

Суммарная сила сопротивления демпфера \vec{F}_{Σ} будет состоять из суммы нормальных \vec{N}_i и касательных сил \vec{Q} , возникающих на каждом упругодемпфирующем элементе:

$$\vec{F}_{\Sigma} = \sum_{i}^{n} \vec{N}_{i} + \sum_{i}^{n} \vec{Q}_{i}$$
 (17)

где n – число упругодемпфирующих элементов в демпфере.

Спроецируем нормальные и касательные силы на направление смещения вибратора у :

$$F_{\Sigma} = \sum_{i=1}^{n} N_i \cdot \cos(\beta_i - \varphi) + \sum_{i=1}^{n} Q_i \cdot \sin(\beta_i - \varphi)$$
(18)

Касательные силы связаны с нормальными силами соотношением:

Рис. 7. Зависимость силы сопротивления демпфера от амплитуды смещения вибратора в размерном виде

$$\vec{O}_i = \vec{N}_i \cdot f(\Delta_i)$$

С учетом эффекта предварительных смещений выражение для суммарной силы сопротивления демпфера в проекции на ось у можно записать в виде:

$$F_{\Sigma} = \sum_{i=1}^{n} N_i (\cos(\beta_i - \phi) + f(\Delta_f) \cdot \sin(\beta_i - \phi))$$
(20)

Для отыскания нормальных усилий в i-том элементе демпфера воспользуемся выражением для обобщенных относительных напряжений $\overline{\sigma_{\phi}^{*}}(\delta_{\mu w}, \delta_{\mu \phi}, v)$, полученных в [8, стр. 9]:

$$\overline{\sigma_{\phi}^{*}}(\delta_{\rho m}, \delta_{\rho \rho'}, v) = \overline{\sigma_{r}}(\delta_{\rho m}) + \frac{1}{2} \cdot (-1)^{v \cdot t} \cdot \overline{\sigma_{r}}(\delta_{\rho m}) + (-1)^{v} \cdot \overline{\sigma_{r}}(\delta_{\rho m}) \cdot \frac{-i(\delta_{\sigma \rho'} - \delta_{\sigma m})}{q_{\rho}(\delta_{\sigma \rho'})}$$
(21)

Тогда, с учетом (21), получим:

$$N_i = \sigma_b^* (\delta_{pmi}, \delta_{p0i}, v) \cdot P_{np} \cdot S$$

(22)

где *S*=*b*•*l* для УДЭ в виде параллелепипедов, либо *s* = $\frac{\pi}{4}(D_a^2 - D_{aa}^2)$ для УДЭ в виде втулки, а давление прессования элемента Р_{пр} связано с его начальной относительной плотностью $\overline{\rho}_a$ следующим соотношением:

$$P_{nv}(\overline{\rho_0}) = \exp(-0.788 + 8.57 \cdot \overline{\rho_0}^{0.5})$$

Подставив выражение (22) и (21) в (20) окончательно получим выражение для суммарного усилия сопротивления демпфера:

$$F_{\Sigma} = \sum_{i=1}^{\infty} \overline{\sigma}_{\phi}^{*}(\delta_{\rho n i}, \delta_{\rho 0 i}, \mathbf{v}) \cdot P_{n p} \cdot S \cdot$$

$$(\cos(\beta_{i} - \phi) + f(\Delta_{f}) \cdot \sin(\beta_{i} - \phi))$$

$$(\cos(\beta_{i} - \phi) + f(\Delta_{f}) \cdot \sin(\beta_{i} - \phi))$$

2. Комплекс определяющих критериев подобия для виброзащитной системы

Для конструкции виброизолятора, изображенной на рис. 5, имеется 15 параметров, определяющих процессы деформирования упругодемпфирующей опоры: I – ширина (мм), b – толщина (мм), Н – высота (мм), Δ – предварительный натяг (мм), R – радиус цапфы вибратора (мм), ρ_o – плотность упругодемпфирующего элемента в свободном состоянии (кг/мм³), $\rho_{\rm np.}$ – плотность исходного материала упругодемпфирующего элемента (кг/мм³), Е – модуль упругости исходного материала упругодемпфирующего элемента (Н/мм²), А – амплитуда деформирования УДЭ (мм), у – текущая деформация УДЭ (мм), F₅ – суммарное усилие сопротивление демпфера (H), f - коэффициент трения, D₋₋ - наружный диаметр спирали (мм), D_{пр} - диаметр проволоки (мм), n – количество

Рис. 8. Зависимость силы сопротивления демпфера от амплитуды смещения вибратора в безразмерном виде

(19) упругодемпфирующих элементов.

Если в конструкции в качестве упругодемпфирующих элементов используются втулки, критериальные координаты будут иметь сходную, с вышеописанной, структуру, за исключением формулы определения площади элемента – втулки.

Из совокупности определяющих и определяемых параметров можно выделить три размерные величины: размерность длины (мм), размерность массы (кг), размерность усилий (H).

По теореме подобия (*π* – теореме) [9, стр. 9] выделим 12 критериев подобия:

- ^p₀ = ^p₀ относительная плотность упругодемпфирующего элемента в свободном состоянии;
- *h* = *H*²
 s – относительная высота УДЭ, *где S=b•I* для УДЭ в виде параллелепипедов, либо

 $S = \frac{\pi}{4} (D_{e}^{2} - D_{ee}^{2})$ для УДЭ в виде втулок;

- 4. $\bar{b} = \frac{b}{l}$ относительная ширина УДЭ;
- $\overline{R} = \frac{R}{H}$ относительный радиус вибратора;
- 6. $\overline{\Delta} = \frac{\Delta}{H}$ относительный натяг;
- ^A = ^A/_{a₀} относительная амплитуда деформирования;
- . f коэффициент трения;
- 9. $\bar{k} = \frac{E \cdot J}{D_n^{-1} \cdot \rho_k \cdot g}$ относительная жесткость витка спирали, где $J = \frac{\pi \cdot D_m}{c}$
 - g ускорение свободного
- падения, равное 9.81 м/с²; 10. <u>y</u> = <u>y</u> – относительная текущая
- a_0 безразмерная деформация УДЭ, a_0 – «остаточная деформация» [8, стр. 9]; 1. $\overline{F} = \frac{F_v}{T}$ – относительная сила
- сопротивления, *Т* сила трения.
 12. п количество
- и количество упругодемпфирующих элементов.

3. Пример расчетного исследования характеристик

Рассчитанная по данной методике петля гистерезиса при циклическом деформировании вибратора демпфера с ►

Рис. 9. Составляющие суммарного гистерезиса демпфера из материала «металлорезина» (МР)

15

дискретным расположением УДЭ в размерном виде показана на рис. 7. Параметры демпфера были следующими: R = 800 мм, b = 60 мм, I = 50 мм, H = 30 мм, Δ = 5 мм, m = 50 г, n = 6.

На рис. 8 показано поле петель в относительных координатах для следующих значений критериев подобия: \overline{d} =10, $\overline{\rho}_{o}$ = 0.17, \overline{b} = 1.22, \overline{h} = 0.31, \overline{R} =26.66, Δ =0.4, \overline{A} = 0.1, f = 0.15, \overline{k} =119992, n= 6.

Методика и, созданная авторами на ее основе, программа позволяют рассчитывать составляющие суммарного гистерезиса: гистерезис в материале «металлорезина» ($F_{\rm MP}$) и гистерезис за счет граничного трения упругодемпфирующего элемента о корпусные детали демпфера ($F_{\rm mp}$) (рис.9), а также характеристики, производные от гистерезиса: коэффициент поглощения, жесткость, рассеянную энергию, коэффициент демпфирования. Все это является необходимым и достаточным для любых динамических расчетов трубопроводных систем.

4. О методике расчета характеристик виброизолятора с двумя конусными втулками из материала «металлорезина»

Авторами создана также методика расчета и программа вычислений всех упругогистерезисных характеристик виброизолятора, показанного на рис. 3, деформируемого в осевом и радиальном направлениях. Математически эта задача свелась к выделению бесконечно малого элемента материала каждой из конусных втулок (рис. 10), составлению для них условий равновесия, нахождению распределения давлений на виброизолятор и корпусные детали с учетом внутреннего гистерезиса в материале и распределенных сил трения в контакте элементов из материала MP и корпусных деталей, и интегрирования всех распределенных сил по объему деформируемых элементов.

Опуская промежуточные выкладки, суть которых аналогична вышеприведенным, запишем выражения, для сил сопротивления для первой (верхней) и второй (нижней) втулок виброизолятора (рис. 3):

$$F_{1} = \int_{0}^{2\pi} \int_{\frac{1}{2}}^{2\pi} \left[\overline{\sigma_{\varphi}^{*}}(\delta_{\varphi_{1}}, \delta_{\varphi_{m}}, v_{1}) \cdot P_{sp1} \cdot \rho_{1} \times \left\{ 1 + (-1)^{v_{1}+1} \cdot f \cdot sign\left(\frac{d\tau_{1}}{dy}\right) \right\} \right] d\rho d\phi$$

$$\cdot (1 - 2e^{-k \cdot \delta_{1}}) \cdot tg\phi_{1} \right] d\rho d\phi$$

$$F_{2} = \int_{0}^{2\pi} \int_{\frac{1}{2}}^{2\pi} \left[\overline{\sigma_{\varphi}^{*}}(\delta_{\varphi_{2}}, \delta_{\varphi_{m}}, v_{2}) \cdot P_{sp2} \cdot \rho_{2} \times \left\{ 1 + (-1)^{v_{2}+1} \cdot f \cdot sign\left(\frac{d\tau_{2}}{dy}\right) \right\} \right] d\rho d\phi$$

$$\cdot (1 - 2e^{-k \cdot \delta_{1}}) \cdot tg\phi_{2} \right] d\rho d\phi$$

$$(25)$$

Для виброизолятора в целом, собранного на базе упругодемпфирующих элементов в виде конических втулок по принципу двойного упруго-гистерезисного упора, суммарная сила сопротивления будет определяться выражением:

$$\vec{F}_{\Sigma} = \vec{F}_1 + \vec{F}_2.$$
 (26)

Алгоритм суммирования петель гистерезиса наглядно показан на рис.11. В расчете основные конструктивные размеры приняты следующими: d₁=d₂=52 мм, D₁=D₂=107 мм, H₁=H₂=18мм, ϕ_1 = ϕ_2 =20°, Δ_1 = Δ_2 =4.5 мм.

Заключение

На базе созданной математической модели деформирования элемента упругогистерезисного материала «металлорезина» созданы методики расчета упругих и диссипативных характеристик опор трубопроводов большой и средней размерности для нефтегазовой отрасли. Опоры обладают рядом преимуществ, по сравнению с традиционными средствами виброзащиты на базе органических резин: независимостью свойств от температуры, как минимум на порядок более высокими демпфирующими свойствами по сравнению с элементами из органической резины или полиуретана. длительной (до десяти лет) стабильностью свойств в эксплуатации, коррозионной стойкостью, возможностью настройки систем виброзащиты под заданные параметры вибрации.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

- А.с. 136608 СССР, МКИ F16F 1/36. Упругий элемент для систем демпфирования/А.М.Сойфер, В.Н. Бузицкий, В.А. Першин (СССР). - № 674556/40; заявлено 27.07.60; опубл. 14.03.61, Бюл.№5.
- 2. Пат. FR2630755 Франция, МКИ B23P 17/06; B23P 17/00; (IPC1-7): D03D 3/02; D04B 1/14; D04H 3/00; F16F 7/00. Spring-type cushion material, springtype cushion made thereof and system for producing the spring-type cushion material/ PIERRES GILDAS LE. – заявлено 11.03.1989.
- Пат. DE6926438U Германия, МКИ F16F 3/02; F16F 3/00. VORRICHTUNG MIT KEGELSTUMPFFEDER. – заявлено 11.13.1969.
- Пат. ЕР0848185 Германия, МКИ F16F 9/53; F16F 13/30; F16F 9/53; F16F 13/ 04; (IPC1-7): F16F 13/30. Damper element and vibration damper containing such an element/ HELLDOERFER TH-OMAS, OTTMAR HORST. – заявлено 17.06.1998.
- 5. Пат. ЕР0838283 Германия, МКИ В21F 27/02; В21F 27/16; В21F 27/00; (IPC1-7): В21F 27/16. Spring cushion/OTTM-AR HORST, HELLDOERFER THOMAS, KRANZLER GUENTHER. – заявлено 29.04.1998.
- 6. Каталог продукции фирмы «Stop-Choc», 2004, www.stop-choc.de.
- Masing G. Wissentschaftliche Verjffentlichungen aus dem Simens-Konzern. 3 Band, Erstes Heft, 1923.
- Котов А.С. Разработка методики расчета характеристик цилиндрических опор трубопроводов из материала МР/ А.С. Котов, М.В. Медников//Международная молодежная научная конференция «XII Туполевские чтения»:тез. докл./ Казань: Казанский гос.техн.ун-т, 2004.- т.1.- С.31-32.
- Алабужев П.М., Геронимус В.Б. и др. Теория подобия и размерностей. Моделирование. Изд. «Высшая школа», М., 1968.

Рис. 10. Расчетная схема нагружения упругодемпфирующего элемента в виде втулки

Рис.11. Схема определения суммарного гистерезиса виброизолятора из двух конических втулок